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ABSTRACT 

We show that every Fr~chet differentiable real function on C(K), K scat- 

tered with locally uniformly continuous derivative has locally compact 
derivative. Using this and similar results, we investigate the existence of 
C2-Fr~chet smooth surjections between various Banach spaces. 

1. I n t r o d u c t i o n  

S. Bates has recently investigated separable Banach spaces X satisfying the condi- 

tion that  for every separable Banach space Y there exists a surjective C~ 

smooth (nonlinear) operator from X onto Y. We will denote the class of all these 

spaces by 13. Bates has shown that, in particular, every separable superrefiexive 

space belongs to B and he also characterized spaces for which his method of proof 
fails. 

THEOREM 1 (Bates): Let X ~ I3 be an infinite-dimensional Banach space. Then 

a t /eas t  one of the following conditions hold: 

(i) Every seminormalized weakly null sequence in X* has a subsequence with 

a spreading model isomorphic to ~1. 

(ii) X* has the Schur property. 

Natural examples of spaces satisfying (i) or (ii) are co and the original Tsirelson 

space, and Bates asked whether indeed co @ B. The question was settled in [9] 
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(i.e. Co ~ B), a paper which was conducted without any knowledge of S. Bates' 

work, and which was mainly concerned with the behavior of C2-smooth real 

functions on co. 
In order to reveal the connection between these matters, let us denote by C 

the class of Banach spaces X for which there exists an open bounded and convex 

subset/4 of X such that for any real function f defined on/4,  with uniformly 

continuous derivative, f~(U) is relatively compact in X*. 

Using a sequential characterization of the compactness of ft(L/) and the Baire 

category principle, we show in Proposition 6 that if X E C, then X ~ B. Thus, 

whenever X E C and Y E ~, there exists no surjective Frdchet differentiable 

operator T: X --+ Y with locally uniformly continuous derivative. A little more 

can be said under some additional assumptions. 

PROPOSITION 2: Let X @ X E C, Y be an infinite-dimensional Banach space 

with nontrivial type, T: X --+ Y be a Frdchet differentiable operator with locally 

uniformly continuous derivative. Then T is locally compact. 

The proof of this statement is identical with that of Corollary 11 of [9], 

using Lemma 5 below instead of Corollary 10 of [9]. It should be noted that  

some additional assumptions must be put on Y because, as follows from the 

Josefson-Nissenzweig theorem, every infinite-dimensional Banach space admits a 

noncompact linear operator into Co. 

Proposition 2 is particularly useful if X @ X -~ X, as is the case when X -- 

C(K), K countable, or X -- T* (the original Tsirelson space) (for these results 

see [4], [5]). Thus in what follows, we will be mainly interested in showing that  

X E C for these spaces. 

In section 2 we collect some basic facts about spaces belonging to C. We 

develop methods from [9] to show that the original Tsirelson space T* belongs 

to C and, as a consequence, does not admit any surjective operator onto Co with 

locally uniformly continuous derivative. Also, C(K), K scattered, belongs to 

C. On the other hand, the Schreier space B ([5, 11, 12]) yields an example of a 

polyhedral subspace of C(w w) which belongs to B. In particular, B is an example 

of a subspace of C(w ~') which is not a quotient of C(K),  K scattered. 

In section 3 we prove a somewhat finer statement, that there exists no surjective 

operator from Co onto T* with locally uniformly continuous derivative. This 

suggests that  there may he many "incomparable spaces" with respect to smooth 

surjections. 

Section 4 is devoted to proving certain estimates for homogeneous polynomials 

on c~, independent of n and the degree of the polynomial, in the spirit of [2]. 
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We are indebted to R. Haydon who first observed that the methods of [9] apply 

also in case of the Tsirelson space, and who informed us about S. Bates' work. 

Our paper is a natural continuation of [9], but for the convenience of the reader 

we will repeat some important definitions and statements. 

Let X, Y be real Banach spaces. We say that  an operator T: X --+ Y is locally 

compact if for every x E X there exists an open neighbourhood x E/d, such that  

T(H) is norm relatively compact in Y. We say that T is weakly (w)-sequentially 

continuous on/~ C X if it maps w-Cauchy sequences from U into norm convergent 

ones. 

A m o d u l u s  o f  c o n t i n u i t y  for a given uniformly continuous function f from a 

metric space (X1, dl) into a metric space (X2, d2) is an increasing real function 

w(6), 6 >__ 0, lim~_~o w(6) = 0, such that 

dl(Xl,X2) _~ (~ implies d2(f(xl),f(x2)) <_ w(6). 

The following two statements have been proved in [9], and will be used 

frequently. 

LEMMA 3: Let c > O, f be a real function on BcF with uniformly continuous 

derivative (with modulus of continuity w( 6) ) and such that suPBc~ Ill'Ill < w(2). 

Let v E Bc~ and {ui}~=l be a block sequence such that v+ui E B ~ .  If  n is large 

enough (the estimate depends only on w(6)), then minl_<i<_n [f(v+u~)- f(v)[ < ~. 

LEMMA 4: Let f be a Frdchet differentiable real function with uniformly 
continuous derivative defined on Boo. Then f is weakly sequentially continuous 

Oil Bco. 

2. T h e  c lass  C 

In this section we collect some basic facts on spaces from the class C, and we 

prove that  C(K) and T* (the original Tsirelson space) belong to C. 

Let us first remark that  if ~1 ~-~ X, then, by classical results in [7], ~2 is a 

linear quotient of X, so X E B. Combined with Proposition 6, this fact yields 

that  X E C implies ~1 ~ X. 

LEMMA 5: Let X be a Banach space, ~1 ~ X. Let 11 be an open, bounded 

and convex subset of X and let f be a real function with uniformly continuous 
derivative on 14. TFAE: 

(i) f is w-sequentially continuous on H; 

(ii) f '(/4) is relatively compact. 
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I f  in addition x,` ~ ,  x, {x,`} (.J,`eN{x} C 5/, then l imf(x , ` )  = f ( x ) .  

Proof'. (ii) ~ (i). Since K = if(b/) is norm compact,  given a weakly Cauchy 

sequence {x,~},`eN in U we have 

lira (r xn - xm) = 0 uniformly inr  �9 K. 
n,rn---~ oo 

By the mean value theorem, for some point x in the interval joining xn and xm, 

we have 

If(x, ,)  - f (Xm)l  = I ( f ' (x) ,x , `  - xm)l <_ sup I(r --Xm/I--> 0 as m , n  --+ ce. 
CEK 

(i) ~ (ii). Denote  the modulus of continuity of f '  on L / b y  w(6). Note tha t  

f is Lipschitz on L/. If f'(LI) is not  relatively compact ,  there  exist ~ > 0 and (by 

Rosenthal 's  theorem) a w-Cauchy sequence {x,`}~eN such tha t  B(x,` ,  ~) C LI and 

fn = f '(x~,) satisfy 1/~ > IIf,`ll > c, IIfn - fmll > C. If l imf(x , ` )  does not exist, 

we are done. Otherwise, by disregarding quantities tha t  can be made arbi trar i ly 

small, we may in addit ion assume tha t  f ( x l )  = f (x ,~) ,n  �9 N. By induction,  we 

find a subsequence nk of N and a sequence {Yk}keN in B x  such tha t  

(1) I(fn~ - f,`,)(Yz)l > ~/4 for k > l, 

(2) I(fi, kl -- f,`k2)(Yl)l < E/100 for ki ,k2 > 1. 

This  is done as follows: Choose Yl E B x  such tha t  ( f l  - f2)(yl )  > ~/2. There  

exists an increasing subsequence {n~}keN of N satisfying (2) for l ----- 1, and 

satisfying (1) for either nl  = 1 or nl  = 2. Fix the choice of nl  and assume 

nl  < n~. Find Y2 E B x  such tha t  (f,`~ - f,`~)(Y2) > ~/2. There  exists an 

{nk}keN of {nlk}keN satisfying (2) for l = 2 and (1) for increasing subsequence 2 

ei ther n2 = n~ or n2 = n21. We continue in an obvious manner.  

We may assume tha t  {Yk}keN is w-Cauchy. Conditions (1) and (2) imply tha t  

for every k > 3 we have either Ifn~(Yk-2 --Yk-1)l > ~/9 or [f,`k--l(Yk--2--Yk--1)l > 

e/9.  Passing to a suitable subsequence of {Yk-2 -- Yk-1}keN and {f,`k}keN, we 

obta in  a w-null sequence {zl}teN Such tha t  f,`, (zl) > ~/9. For a > 0 small enough, 
1 e This is a contradict ion,  we have x m +az~  E U and f(x,`,  +az l )  > f(x,~L) + ~ag. 

since x l ,  x,`l + az l ,  x2, x,`2 + a z 2 , . . ,  is w-Cauchy. 

To prove the last s ta tement ,  consider the w-Cauchy sequence {y,`} C L/defined 

as y2,` = xn,y2,`+l = x , n  �9 N. By (i), there exists a l imf(y , ` ) ,  so l imf (x , ` )  = 

f(x). I 
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PKOPOSITION 6: Let X E C be a separable Banach space; then X qt B. 
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Proof." Let us observe that  ~1 ~-~ X. Indeed, otherwise by classical results (see 

[7]) ~2 is a linear quotient of X. For any convex, bounded open neighbourhood 

/4 of the origin in X, there exists a bounded linear operator T: X --+ ~2 such that  

Be2 C T(L/), The real function f = [l" II 2 o T has uniformly continuous derivative 

on b/. The derivative D f  satisfies 

Dr(z)  = DIITxII~ o T  = T*(DIITxII~). 

As 2Be~ = {D[lyl122,y 6 Be2} and T* is noncompact (by Schauder's theorem), 

Df(/A) is noncompact. Consequently, X ~t C; a contradiction. Thus gl ~ X. 

We proceed with the proof by contradiction. Assume X 6 B, so there exists a 

surjective operator T: X -~ ~2 with locally uniformly continuous Fr4chet deriva- 

tive. By shifting and scaling, there exists a covering {/A~}~eN of X consisting of 

open bounded and convex sets satisfying: 

(1) T]u ~ has uniformly continuous derivative; 

(2) for every real function f defined on b/,~ with uniformly continuous derivative, 

f'(b/n) C X* is relatively compact. 

By the Baire category principle, for some n 6 N, T(/dn) contains an open ball 

B(z0, ~), ~ > 0. 
By Rosenthal's theorem, there exists a w-Cauchy sequence {xk}keN in/An such 

that  {T(xk)}ke~ are e/4-separated, that  is 

[[T(xk) - T(xl)[[ > ~/4 for k # I. 

Choose a bump function r on ~2 with uniformly continuous derivative and r = 

1, r = 0 for [[x[[2 > ~/10. Let f(x) = ~-~k~~ r + x2k). Then, f o T has 
uniformly continuous derivative on U~, but f o T  is not w-sequentially continuous, 

a contradiction with Lemma 5. | 

We have the following operator analogue of Lemma 5. 

PROPOSITION 7: Let X E C be a Banach space, T: X --+ Y be an operator with 
locally uniformly continuous derivative. TFAE: 

(i) T is locally w-sequentially continuous; 
(ii) T is locally compact. 

Proof: Find a covering {/d~}xen of X consisting of bounded open and convex 

sets with the property that  
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(1) T u~ has uniformly continuous derivative; 

(2) for every real function f defined on U~ with uniformly continuous derivative, 

f'(/4~) is relatively compact. 

We will show that T u~ is weakly sequentially continuous if and only if T(/4~) 

is compact. 

(i) ==~ (ii). X E C ==~ gl ~ X, so Rosenthal's theorem finishes the proof. 

(ii) ~ (i). It is enough to use Lemma 5 together with the fact that for every 

y* E Y*, y* o T I is w-sequentially continuous. I 
I 

I U,  

It should be noted that T satisfying the above conditions also locally maps 

weakly convergent sequences in X into weakly convergent sequences in Y. More 

precisely, let /4 be an open bounded and convex set in X, such that for ev- 

ery real function on/4  with uniformly continuous derivative f ' i /4) is compact, 

and let T : /4  -~ Y be an operator with uniformly continuous derivative. Then 

{xn) U {x} C/4 and xn ~ ,  x implies T(x , )  ~* T(x). Indeed, by the last part 

of Lemma 5, r o T(xn) -~ r o T(x) for every r E Y*. 

PROPOSITION 8: Let X E C be a separable reflexive space, T: X --~ Y be an 

onto operator with locally uniformly continuous ~dchet derivative. Then Y is 
reflexive. 

Proof'. Let {/4n}neN be a covering of X consisting of open bounded and convex 

sets such that  for every real function f defined on/4n, n E N, with uniformly 

continuous derivative, f'(/4,~) is relatively compact. By the Baire category prin- 

ciple, for some U,~, T(U,) has nonempty interior. As T maps weakly convergent 

sequences from Un into weakly convergent sequences in Y, T(/4n) is relatively 

weakly sequentially compact. By the Eberlein-Smulyan theorem Y is reflexive. 

I 

PROPOSITION 9: Let T* be the original Tsirdson space; then T* E C. 

Proof." Let f be a real function on BT. with uniformly continuous Fr~chet 

derivative. The space T* is reflexive and has an unconditional basis {ek}keN. 

By standard argument and using Lemma 5 it is enough to show that f (xn)  

converges to f(0) for every w-null sequence in BT.. Assume the contrary, i.e. for 

some {X,}neN, which may be chosen to be a block sequence satisfying [[xn[[ -- 

l ,n E N, and some e > 0, [f(Xn) - f(0)[ > e. By properties ofT* [5], for every 
N E N, xN,Xg+l , . . .  ,x21v is 2/-equivalent to the canonical basis of %/v. This is 

a contradiction with Lemma 3. I 
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In particular, there is no C 2 operator from T* onto Co. 

Clearly, the same proof also works for T~, 0 < 0 < 1 (see [5]), so we have a 

continuum of mutually totally incomparable reflexive spaces from C. Let us also 

remark that  duals to separable reflexive spaces not belonging to/3 cannot contain 

a copy of Co, ~1 or a superreflexive space (or even a subspace with nontrivial type). 

THEOREM 10: Let K be a scattered compact. Then C(K) �9 C. 

Proof: It is enough to show that every real function with uniformly continuous 

derivative on BC(K) is w-sequentially continuous. 

Since every separable subspace of C(K), K scattered, is contained in a sepa- 

rable subspace of c ( g )  isomorphic to c(gl ) ,  where g l  is countable (e.g. [6]), 

we may assume that  K is countable. 

Bessaga and Pelczynski in [4] provided an isomorphic classification of C(K) 
spaces, K countable, as those isomorphic to C[0,(~], where a is a countable 

ordinal with the interval topology. 

We will prove the claim by ordinal transfinite induction on a. However, in 

order to make the induction process work, we are forced to consider a slightly 

more general setting and introduce auxiliary parameters F,  G, a l , . . . ,  a~. 

Simple facts on ordinal arithmetics which are used below can be found, e.g., 

in [10]. 

We set some notation. Let a E wl. We call a pair F, G E C[0, a] admiss ib le  

if inf[0,~] F > 0, sup[o,~ l G < 0. 

Given a l , . . . ,  a~ ~ a, we define a closed subspace of C[0, a]: 

C Gel ~ ' ' ' lO~r  - -  - -  {0,~1 = { r  �9 c [0 ,  ~], r  = 0,1 < i < r}.  

Given an admissible pair F, G �9 C[0, a], we define 

F,G C~1 ..... ~r. ~ F} .  B~,~, ..... ~ = { r  t0,o] " < r  < 

It is easy to verify that  for every admissible pair F and G, R F'G is an open 

convex neighbourhood of the origin in C ~1 ..... ~ 
[ o , ~ ]  �9 

We will prove the following claim by induction on a: 

For every admissible pair F, G, every a l , . . . ,  a~ < a, and every real function 

f with uniformly continuous derivative on bl = R F,G f is w-sequentially - -0~0(  1 ~...~O~r ' 

Cauchy on Lt. 

Observe that  setting F - 1, G - - 1 ,  {ai} = @ and using Lemma 5 (~1 

C(K) ,  for K scattered) we obtain the desired result. 
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CASE: O~ - :  030. The proof of the special case when/2 = Be o from [9] requires 

only purely formal adjustments to generalize into case M = B F,O 
t~/0 iO~1 ~., .  ~O~r _ 1 ~0J 0 ' 

F, G admissible, a l , . . . ,  a t -1  E w0. 

In case none of a l , . . . ,  a~ equals w0, we proceed by contradiction as follows. 

Let {r be a w-Cauchy sequence in /2  = B F,O f as above, f ( r  
tO0 ~ 1  ).- .~r ' 

not convergent. By a perturbation argument, we may assume that there exists 

C E R, G(wo) < C < F(w0) such that for each n, Cn(a) = C for a E w0 large 

enough (depending on n). There exists K E ~o such that 

inf F > C ,  sup G < C .  
[K,o~o] [K,~o] 

Define admissible pair _P, 0 on C[0, To] as 

[ - C 

= 
- c t 

f o r a ~  K,  
for a > K;  

for a _< K,  
for a > K. 

Consider the affine mapping 

T: C [ % :  -+ C ..... ~ ] [0,~o] 

defined as T(r  = r + C .  X[K,o~o]- The function f o T has uniformly continuous 

derivative on BF'a~o,~,...,~,~o, but f o T(r - O  �9 X[g,~o]) is not convergent, a 
contradiction. 

CASE: a ---- Wo �9 a '  + a" ,  where a ' ,  a "  E w0. It is enough to repeat the above 

proofs working simultaneously in all a ~ copies of w0 in the domain. 

INDUCTIVE STEP: Assume our claim is true for all a E [wo,/3),/3 E [wo,wl). In 

addition, let us assume that  for no ? </3,/3 = 7+w0, and/3 is a limit ordinal. Let 

a l , . . . ,  a r  </3, F, G be an admissible pair from C[0,/3] and f be a real function 

with uniformly continuous derivative on/2  = B;'~I ..... ar,Z' f(0)  = 0, if(0) = 0. 

Choose an increasing sequence /3k /~ /3 such that  [/3k + 1,/3k+l] are clopen, 

a l , . .  �9 ,a~ < /31. Define for I < m, p~,m: "qo,fJ]cTal ..... a~'~ -4 "~[0,f~](Tal ..... at,f3 as 

pl ,m(r = { 0 i f ae[ f l l+ l , f lm] ,  
~b((~) otherwise. 

Let us assume, by contradiction, that there is a w-Cauchy sequence {r C H, 

f(r  < 0, f(r  > 1 and each r is supported by [0,fli] for some i E N. 
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Similarly to Claim 7 of [9], we obtain that there is k E N and some infinite sets 

M1 of odd integers and M2 of even integers satisfying, whenever k < l < m, 

f(pl'm(r ) < �88 for all but  finitely many n e M2, 

f(pl,m(r ) > 3 for all but finitely many n �9 M1. 

Indeed, otherwise (assuming, e.g., that given any k, no such M1 exists) we define 

a decreasing sequence of infinite subsets{Mj}~~ of odd integers and increas- 
l oo m oo ing sequences of integers { i}i=l, { i}i=l, li < mi < /i+1, such that Mj+I = 

{n �9 M.3,j~r162 >_ �88 is infinite. Given any N �9 N, we can thus find 

Cn �9 MN for which [ f ( r  f (ply,m, (r >_ - �88 i = 1 , . . . ,  N - 1 ,  a contradiction 

with Lemma 3. 

We may assume, without loss of generality, that k = 1, i.e. that the above 

holds for every 1 < l < m. Using the above claim pass to another subsequence 

{r Pi �9 M2 for i even, Pi �9 M1 for i odd, such that 

f ( r  < �88 f ( r  > 3, where ~bi = pl,i(r 

In addition, we may also assume supp(r C [0, ill] U [fli + 1, fli+l]. By construc- 

tion, {r C_/A is w-Canchy. Consider the linear operator L: C a~[o,z~+~o]a~'flx+~~ _~ 

C~X ..... ~ ' #  defined by [0 ,~]  , 

f if < L(r  / ~b(fl 1 + i)" r if a e [fli + 1, fli+l]. 

There exists 77 > 0 such that for every i �9 N 

Gl[fli+l,fl,+l] < - - ~ "  '~b'/,l[fli+l,fli+x] < Fita,+~,a,+,l. 
- -  ~ 

Define admissible F,  G E C[0, fll + w0] as 

= { F(a )  for a_< ~1, 
1 for a > ill; 

O(a)  = {-G(~ a) forf~ a < f l l , a  > ~1. 

The real function f o L has uniformly continuous Fr~chet derivative on 
B#,O fl1+~o,~1 ..... ~r,fll+~o" However, foL((r +6}'X{fll+j}) is not convergent, 
a contradiction with the inductive hypothesis since a l  + w0 < ft. 

I:tF, G The case H = ~.#,~1 ..... ~r, where all ai  are distinct from fl, follows from the 

previous case in the same fashion as in the case of Co above, that  is to say, an 

adjustment of the admissible pair F, G allows us to add fl among the a l , . . . ,  a~. 
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The only remaining case is when, for some q, > w 2, /3 = "r + 5 where 5 < w0. 

In this case there exists a homeomorphism of the domain H: 7 + 5 ~ 5 + 7 = 7 

defined as 
H(a) = { ~ + a i f a - <  7, 

a '  if a = 7 + a ' .  

Thus, we obtain a reduction to the case of 7, 7 </3, and the proof is completed. 

I 

The following surprising example, based on a construction of Schreier [12], was 

investigated in [11]. 

Example 11: There exists a subspace B of C(w ~) with unconditional shrinking 

basis {en} and a biorthogonal basis {eL} such that e n w 0 and the spreading 

model built on {e*} is Co. 

It follows immediately from Theorem 1 that B E B. Moreover, using [11], one 

can show by standard argument that the formal canonical injection from B into 

~2 is bounded. Yet, the space B as a subspace of a polyhedral space is itself 

(isomorphically) polyhedral and thus saturated by copies of Co. The space B also 

indicates that  the structure of w-Cauchy sequences in general C(K),  K scattered, 

is more complicated than that  of Co. This is the main obstacle in trying to prove 

analogous statements to Proposition 13 below for C(K) instead of co. 

3. O p e r a t o r s  f r o m  co 

The main Proposition 13 of this section implies that  a C2-smooth operator from 

Co into a space Y with an unconditional basis is locally compact unless Co ~-~ Y. 

Together with Proposition 8 this statement implies that  there is no surjective 

C2-smooth operator from Co onto T* or vice versa. 

LEMMA 12: Let T: Bco --4 Y be an operator with uniformly continuous Frdchet 

derivative on Boo. Assume that for every given u E Bco and {vn}ner~ C Co 

equivalent to the canonical basis of CO, such that u + v~ E Bco, we have 

lim T(u + v~) = T(u). 

Then T is w-sequentially continuous on Boo. 

Proof: Assume, by contradiction, that  T is not w-sequentially continuous on 

B~o, i.e. there exists a w-Cauchy sequence {Xn}ner~ E Boo such that  T(xn) is 

not convergent. If {T(x~)}neN is relatively compact, then there exists y* E Y* 

such that  {y* o T(x,~)}neN is not convergent, a contradiction with Lemma 4. 
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We therefore assume that  {T(xn)}neN is not relatively compact. By passing to 

a subsequence, changing notation and disregarding quantities that  can be made 

arbitrary small, we can assume that there is a w-Cauchy sequence {x~}~eN �9 B~ o 

satisfying: 

(i) d is t{span{T(xl ) , . . .  ,T(x,~)} ,T(xn+l)}  > ~ > O, 

(ii) {x,~} are supported in an increasing sequence of finite intervals In = [1, ms], 

(iii) all the xj,  for j > n, are equal on I,~. 

By assumption, for every x~ and every block sequence {Yk}keN such that  

xn + yk �9 Bco, 
lim T(xn  + Yk) = T(x,~). 

k --+ o o  

Thus for every n �9 N there exists l~ �9 N, l~ > m~ such that IIT(xn+u)-T(x,~)ll < 

fl/2 for every u �9 Co, x,~ + u �9 B~o, supp(u) C [ln, oo). Consequently, for every 

N �9 N we can choose a finite sequence xn~, . . . ,  xn2N satisfying l,~ < mn~+~, i = 

1 , . . . ,  2N - 1. We obtain the following: 

IlT(x~, + x[~,,-~2N]" x~2N) - T(x~,)ll < / ~ / 2 ,  i = 1 , . . .  , 2 N  - 1. 

Put  ua~ = x~2N - (xn2~ + X[z~2~,n~,2N ] �9 xn2N),i = 1 , . . . , N -  1. Then u~, is 

a block sequence satisfying [lu~,l[ -- 2, supported by [mn2,_~,ln2,]. Using (i), 

choose y* �9 B y .  satisfying 

y*(T(xn , ) )=O,  i = 1 , . . . , 2 N -  1, 

y*(T(xn2N)) >/3. 

Thus we have lY* oT(xn2N --un,)l  < fl/2, i = 1 , . . . , N -  1, ]y* oT(xn2N)[ > /3. 

Because N is arbitrary large, it is a contradiction with Lemma 3. | 

P R O P O S I T I O N  13: Let Y be a separable Banach space with an unconditional 

basis. Suppose T: co --~ Y has a locally uniformly continuous Fr~chet derivative. 

Then either co ~ Y or T is locally compact. 

Proof: We proceed by contradiction, assuming that co ~z+ y and T is 

not locally compact. By standard arguments together with Lemma 12 and 

Proposition 7, we may assume that  T has uniformly continuous derivative on 

{a �9 Bco,a = ~a ie~ , - (~  < ai <_ 1 for i �9 N} for some ~ > 0, T(0) = 0 and 

][T(ek)[I >_ 2~ > 0. Denote by {xk}keN the unconditional normalized basis of Y, 

{x~}keN its dual basis. By the proof of Theorem 10 (a variation of Lemma 4), 

{T(ek)}keN is w-null, so on passing to a subsequence we may assume that  there 

exist a sequence J~ = [ik,jk] of consecutive intervals of integers and fk �9 B y . ,  
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* . x* }, such that fk oT(ek) > 3c/2 > 0. Put pk: y __~ y to be fk E span{x i~ , . . ,  3~ 
a projection defined as P k ( ~ =  1 aixi) = ~"J~. cqxi. Our aim now is to pass to 

a subsequence {ki}ieN of N such that: 

n 

fk loT(~-~ek~)  >>_E for every 1 < / 
] % 

< n .  
i = l  

Before we present the construction, let us observe how this implies the statement 

of Proposition 13. By compactness of bounded sets in finite-dimensional space 

pk~y, we may find an increasing sequence of integers {nv}peN such that for every 

l E N  
Up 

l i m p k ' ( T ( ~ e k , ) ) = u l  
p --). c ~  

i = l  

exists, and of course IlutI[ > s. 

By the unconditionality of {Xk}keS and boundedness of T, {ut}zes forms a 

block basis in Y satisfying 

n 

l= l  

In other words, {Ul}leN is equivalent to the canonical basis of co. The left in- 

equality follows from the fact that {ul } is a seminormalized block basic sequence. 

From the unconditionality, we obtain that H ~ atul]I -< C max lalIII ~ ut 1[, and 
the latter is bounded by the above and by the unconditionality of the basis (which 

implies that  ~ pk, is bounded). The sequence {ki~ieN is constructed by induc- 

tion as follows. Given r E N, put n~ to be a large enough integer (Lemma 3) so 
T~ r that  whenever f E By. ,  v E Boo, {wi}i=l e co are such that v + wi E Be o, and 

w~ are 1-equivalent to the canonical basis of c~ ~, we have 

< "+:  

for some i E [1, n,]. 

Using Lemma 3 again, there exists Q1 E N, Q1 > nl such that fi oT(e~ +u) > 
(1 + �88 whenever i E [1, nl], u E Bco, supp(u) C [Q1, c~). On the other hand, 

for every j > Q1 there exists some i E [1, nl] such that f j  oT(ei +e j )  > (1 + �88 
= Thus there exists kl E [1, nl] and an infinite increasing sequence 1 1 

M1 C N such that  for every u E B~ o, supp(u) C M1 and every k E M1 we have 

k :> kl and 

fk, o T(ek, + u) >_ (1 + �88162 fk o T(ek, + ek) >_ (1 + �88162 
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1 such that  fioT(ek~ +ei+u) >_ (I+-~)E whenever Similarly, there exists Q2 > mn 2 
i �9 (m~, . . .  ,mn2},l u �9 Boo, supp(u) C [Q2, c~). Also, whenever j > Q2, there 

exists i �9 {m~, . . . ,  mln2 } such that fjoT(ek, +e,+ej) >_ ( l+~)e.  Thus, there exist 

�9 ., {m 1,m2,. .  .} = M2 C M1 k2 �9 {ml, .  m12 } and an infinite increasing sequence 2 2 

such that  for every u �9 Boo, supp(u) C M2 and every k �9 M2 we have k > k2 

and 

fk2~ +ek2+U)>--(l+ l)r fkoT(ekl  +ek2+ek)>_( l+~)r  

The inductive process continues in an obvious manner, at the r-th step choosing 

kr e {m~ -1, m r - l l  C Mr-1 and a subset Mr C Mr-1 satisfying 
�9 . .  , n r J 

A~ o T ek~ + u >_ 1 + ~ r fk o T ek~ + ek >_ 1 + ~ r 
i-= l 

whenever u E Bc0, supp(u) C Mr and k E Mr. This finishes the proof. | 

As an immediate consequence, there exists no C 2 operator from co onto T*. 

4. A n a l y t i c  func t ions  on  Co 

In the last part of our paper, we will obtain a finer description of the behavior of 

real analytic functions on co, in the spirit of Lemma 4. A similar statement was 

obtained in the complex setting by Aron and Globevnik in [1]. In fact, using the 

standard complexification argument, their result implies our Proposition 16. 

Our proof uses ideas from [2], but adds a new ingredient of estimating the 

second derivative, which yields certain estimates independent of the degree of 

the polynomial and is of independent interest. 

We refer to [2] for most of our notation. 

Given a real C2-smooth function f on some domain/A in c~, we denote by 

D2f: ld --+ E(c~, ~ )  the usual second derivative of f ,  which can be represented at 

every point of/d by a symmetric matrix (02f/Ox~Oxj)~d=l ..... n. For T e E(c~, ~ ) ,  

I]TII stands for the usual operator norm. Let us denote -~f -- ~n=l ]02f/Ox21. 
The following lemma is well known; we include the proof for convenience. 

LEMMA 14: Let T = (aij)i,j=l,...,n E s I[TII = 1; t hen  Ein=l laiil < 1. In 
particular, let,f  E C 2, f :  Bc~ --+ R, []D2fH <_ 1 on Bc~. Then -~f <_ 1 on Bc~. 

Proof: Clearly, 
n 

i=l 
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For any choices of signs gj ---- =t=1, 5i = +1, 1 < i , j  <_ n, we have 

i=1 j = l  i=1 j r  

Keeping 5i fixed and averaging over all possible combinations of signs of ej we 

obtain [[T[] >_ ~i~=1 5iaii, so IITII _> zin_--I [aii[. | 

LEMMA 15: Let p be a homogeneous polynomial of  degree k on Beg. f l a p  <_ 1 
on Bc~, then ~i~=1 Ip(ei)[ <_ 16. 

Proof." We may assume that n is odd and p is a symmetric polynomial, and we 

need to prove our estimate with 8 rather than 16. Indeed, otherwise assuming 

p(ei) >_ 0 (here is why we need a better estimate; in general we have to pass to a 

suitable subset of {e~}i=l , where the signs of p remain constant) we can consider 

/5 defined on Bc;~, m _> n, m odd, as 

where IIm is the group of permutations of {1 , . . . ,  m}. Clearly, t5 is symmetric, 
m n 

A---~ ___ 1 a n d  E i - - 1  I: (edl = E i = I  [p(ei)[. 
k Assume p ( x l , . . . ,  x,~) = ~l~l=k a~x~ 1 " '  x,~"; denote 5~ the coefficient by x i . 

Clearly, 2i~_11p(edl = ~ 1 1 ~ d .  To estimate ~i~_1 I~il, consider the polynomial 

n .02  p 
q(xl,... ,xo)= 

i= l  

Then q is a homogeneous polynomial of degree k - 2, ]q] _< 1 on Bc~ and, due 
k--2 to the symmetry of p and n being odd, the leading coefficients of q by x i 

are ( -1 ) ik (k  - 1)di. By Theorem 1.2 of [2], k(k - 1) ~i~1  [di] <_ 4k 2. Thus 

E in=l [ai[ ~ 8, and the proof is completed. | 

Unfortunately, uniform estimates of this type, independent of the dimension 

n and degree of the polynomial, are not valid for nonhomogeneous polynomials 
n 1 -  ( cons ide r ,  e.g., 1-Ii=l( x 4) on c~). This is the reason why no analogue of the 

following proposition is valid under the weaker assumption of C 2 smoothness 

rather than analyticity. 
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PROPOSITION 16: Let f be a real analytic function on some domain ld in Co, 

0 C 14, f(O) = 0 and f'(O) = O. Then there exists some E > 0 such that 
o o  

Proof: Let us assume that the Taylor series of D 2 f  at 0, namely 

D2f ( x )  = Po + Pl(x)  + P2(x) + ' . ' ,  

where Pk(x) is a k-homogeneous polynomial form Co into s el), is uniformly 

convergent on r and moreover satisfies 

sup IlPk(x)l I < K(1 - a )k  
x E ~ B c  o 

where K is some constant. By Lemmas 14 and 15 and an easy homogeneity 

argument, we obtain 

o o  o o  

E If(ee~)] <- 16K62 E (1 - ~)k = 16KE. 
i = 1  k = O  
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