SMOOTH FUNCTIONS ON C(K)

ΒY

Petr Hájek

Department of Mathematics, University of Alberta Edmonton, T6G 2G1, Canada and Mathematical Institute, Czech Academy of Science

Žitná 26, Prague, Czech Republic e-mail: phajek@vega.math.ualberta.ca

ABSTRACT

We show that every Fréchet differentiable real function on C(K), K scattered with locally uniformly continuous derivative has locally compact derivative. Using this and similar results, we investigate the existence of C^2 -Fréchet smooth surjections between various Banach spaces.

1. Introduction

S. Bates has recently investigated separable Banach spaces X satisfying the condition that for every separable Banach space Y there exists a surjective C^{∞} -Fréchet smooth (nonlinear) operator from X onto Y. We will denote the class of all these spaces by \mathcal{B} . Bates has shown that, in particular, every separable superreflexive space belongs to \mathcal{B} and he also characterized spaces for which his method of proof fails.

THEOREM 1 (Bates): Let $X \notin B$ be an infinite-dimensional Banach space. Then at least one of the following conditions hold:

- (i) Every seminormalized weakly null sequence in X^* has a subsequence with a spreading model isomorphic to ℓ_1 .
- (ii) X^* has the Schur property.

Natural examples of spaces satisfying (i) or (ii) are c_0 and the original Tsirelson space, and Bates asked whether indeed $c_0 \notin \mathcal{B}$. The question was settled in [9]

Received January 23, 1997

(i.e. $c_0 \notin \mathcal{B}$), a paper which was conducted without any knowledge of S. Bates' work, and which was mainly concerned with the behavior of C^2 -smooth real functions on c_0 .

In order to reveal the connection between these matters, let us denote by \mathcal{C} the class of Banach spaces X for which there exists an open bounded and convex subset \mathcal{U} of X such that for any real function f defined on \mathcal{U} , with uniformly continuous derivative, $f'(\mathcal{U})$ is relatively compact in X^* .

Using a sequential characterization of the compactness of $f'(\mathcal{U})$ and the Baire category principle, we show in Proposition 6 that if $X \in \mathcal{C}$, then $X \notin \mathcal{B}$. Thus, whenever $X \in \mathcal{C}$ and $Y \in \mathcal{B}$, there exists no surjective Fréchet differentiable operator $T: X \to Y$ with locally uniformly continuous derivative. A little more can be said under some additional assumptions.

PROPOSITION 2: Let $X \oplus X \in C$, Y be an infinite-dimensional Banach space with nontrivial type, $T: X \to Y$ be a Fréchet differentiable operator with locally uniformly continuous derivative. Then T is locally compact.

The proof of this statement is identical with that of Corollary 11 of [9], using Lemma 5 below instead of Corollary 10 of [9]. It should be noted that some additional assumptions must be put on Y because, as follows from the Josefson-Nissenzweig theorem, every infinite-dimensional Banach space admits a noncompact linear operator into c_0 .

Proposition 2 is particularly useful if $X \oplus X \cong X$, as is the case when X = C(K), K countable, or $X = T^*$ (the original Tsirelson space) (for these results see [4], [5]). Thus in what follows, we will be mainly interested in showing that $X \in C$ for these spaces.

In section 2 we collect some basic facts about spaces belonging to C. We develop methods from [9] to show that the original Tsirelson space T^* belongs to C and, as a consequence, does not admit any surjective operator onto c_0 with locally uniformly continuous derivative. Also, C(K), K scattered, belongs to C. On the other hand, the Schreier space B ([5, 11, 12]) yields an example of a polyhedral subspace of $C(\omega^{\omega})$ which belongs to \mathcal{B} . In particular, B is an example of a subspace of $C(\omega^{\omega})$ which is not a quotient of C(K), K scattered.

In section 3 we prove a somewhat finer statement, that there exists no surjective operator from c_0 onto T^* with locally uniformly continuous derivative. This suggests that there may be many "incomparable spaces" with respect to smooth surjections.

Section 4 is devoted to proving certain estimates for homogeneous polynomials on c_0^n , independent of n and the degree of the polynomial, in the spirit of [2].

We are indebted to R. Haydon who first observed that the methods of [9] apply also in case of the Tsirelson space, and who informed us about S. Bates' work.

Our paper is a natural continuation of [9], but for the convenience of the reader we will repeat some important definitions and statements.

Let X, Y be real Banach spaces. We say that an operator $T: X \to Y$ is locally compact if for every $x \in X$ there exists an open neighbourhood $x \in \mathcal{U}$, such that $T(\mathcal{U})$ is norm relatively compact in Y. We say that T is weakly (w)-sequentially continuous on $\mathcal{U} \subset X$ if it maps w-Cauchy sequences from \mathcal{U} into norm convergent ones.

A modulus of continuity for a given uniformly continuous function f from a metric space (X_1, d_1) into a metric space (X_2, d_2) is an increasing real function $\omega(\delta), \delta \geq 0$, $\lim_{\delta \to 0} \omega(\delta) = 0$, such that

 $d_1(x_1, x_2) \leq \delta$ implies $d_2(f(x_1), f(x_2)) \leq \omega(\delta)$.

The following two statements have been proved in [9], and will be used frequently.

LEMMA 3: Let $\varepsilon > 0$, f be a real function on $B_{c_0^m}$ with uniformly continuous derivative (with modulus of continuity $\omega(\delta)$) and such that $\sup_{B_{c_0^m}} ||f'||_1 \le \omega(2)$. Let $v \in B_{c_0^m}$ and $\{u_i\}_{i=1}^n$ be a block sequence such that $v+u_i \in B_{c_0^m}$. If n is large enough (the estimate depends only on $\omega(\delta)$), then $\min_{1 \le i \le n} |f(v+u_i) - f(v)| < \varepsilon$.

LEMMA 4: Let f be a Fréchet differentiable real function with uniformly continuous derivative defined on B_{c_0} . Then f is weakly sequentially continuous on B_{c_0} .

2. The class C

Vol. 107, 1998

In this section we collect some basic facts on spaces from the class \mathcal{C} , and we prove that C(K) and T^* (the original Tsirelson space) belong to \mathcal{C} .

Let us first remark that if $\ell_1 \hookrightarrow X$, then, by classical results in [7], ℓ_2 is a linear quotient of X, so $X \in \mathcal{B}$. Combined with Proposition 6, this fact yields that $X \in \mathcal{C}$ implies $\ell_1 \nleftrightarrow X$.

LEMMA 5: Let X be a Banach space, $\ell_1 \nleftrightarrow X$. Let U be an open, bounded and convex subset of X and let f be a real function with uniformly continuous derivative on U. TFAE:

- (i) f is w-sequentially continuous on \mathcal{U} ;
- (ii) $f'(\mathcal{U})$ is relatively compact.

P. HÁJEK

If in addition $x_n \xrightarrow{w} x$, $\{x_n\} \bigcup_{n \in \mathbb{N}} \{x\} \subset \mathcal{U}$, then $\lim f(x_n) = f(x)$.

Proof: (ii) \Longrightarrow (i). Since $K = \overline{f'(\mathcal{U})}$ is norm compact, given a weakly Cauchy sequence $\{x_n\}_{n \in \mathbb{N}}$ in \mathcal{U} we have

$$\lim_{n,m\to\infty} \langle \phi, x_n - x_m \rangle = 0 \quad \text{uniformly in} \phi \in K.$$

By the mean value theorem, for some point x in the interval joining x_n and x_m , we have

$$|f(x_n) - f(x_m)| = |\langle f'(x), x_n - x_m \rangle| \le \sup_{\phi \in K} |\langle \phi, x_n - x_m \rangle| \to 0 \quad \text{ as } m, n \to \infty.$$

(i) \Longrightarrow (ii). Denote the modulus of continuity of f' on \mathcal{U} by $\omega(\delta)$. Note that f is Lipschitz on \mathcal{U} . If $f'(\mathcal{U})$ is not relatively compact, there exist $\varepsilon > 0$ and (by Rosenthal's theorem) a w-Cauchy sequence $\{x_n\}_{n\in\mathbb{N}}$ such that $B(x_n,\varepsilon) \subseteq \mathcal{U}$ and $f_n = f'(x_n)$ satisfy $1/\varepsilon > ||f_n|| > \varepsilon$, $||f_n - f_m|| > \varepsilon$. If $\lim f(x_n)$ does not exist, we are done. Otherwise, by disregarding quantities that can be made arbitrarily small, we may in addition assume that $f(x_1) = f(x_n), n \in \mathbb{N}$. By induction, we find a subsequence n_k of N and a sequence $\{y_k\}_{k\in\mathbb{N}}$ in B_X such that

(1)
$$|(f_{n_k} - f_{n_l})(y_l)| > \varepsilon/4 \quad \text{for } k > l,$$

(2)
$$|(f_{n_{k_1}} - f_{n_{k_2}})(y_l)| < \varepsilon/100 \quad \text{for } k_1, k_2 > l.$$

This is done as follows: Choose $y_1 \in B_X$ such that $(f_1 - f_2)(y_1) > \varepsilon/2$. There exists an increasing subsequence $\{n_k^1\}_{k \in \mathbb{N}}$ of \mathbb{N} satisfying (2) for l = 1, and satisfying (1) for either $n_1 = 1$ or $n_1 = 2$. Fix the choice of n_1 and assume $n_1 < n_1^1$. Find $y_2 \in B_X$ such that $(f_{n_1^1} - f_{n_2^1})(y_2) > \varepsilon/2$. There exists an increasing subsequence $\{n_k^2\}_{k \in \mathbb{N}}$ of $\{n_k^1\}_{k \in \mathbb{N}}$ satisfying (2) for l = 2 and (1) for either $n_2 = n_1^1$ or $n_2 = n_2^1$. We continue in an obvious manner.

We may assume that $\{y_k\}_{k\in\mathbb{N}}$ is w-Cauchy. Conditions (1) and (2) imply that for every k > 3 we have either $|f_{n_k}(y_{k-2}-y_{k-1})| > \varepsilon/9$ or $|f_{n_{k-1}}(y_{k-2}-y_{k-1})| > \varepsilon/9$. Passing to a suitable subsequence of $\{y_{k-2}-y_{k-1}\}_{k\in\mathbb{N}}$ and $\{f_{n_k}\}_{k\in\mathbb{N}}$, we obtain a w-null sequence $\{z_l\}_{l\in\mathbb{N}}$ such that $f_{n_l}(z_l) > \varepsilon/9$. For $\alpha > 0$ small enough, we have $x_{n_l} + \alpha z_l \in \mathcal{U}$ and $f(x_{n_l} + \alpha z_l) > f(x_{n_l}) + \frac{1}{2}\alpha \frac{\varepsilon}{9}$. This is a contradiction, since $x_1, x_{n_1} + \alpha z_1, x_2, x_{n_2} + \alpha z_2, \ldots$ is w-Cauchy.

To prove the last statement, consider the w-Cauchy sequence $\{y_n\} \subset \mathcal{U}$ defined as $y_{2n} = x_n, y_{2n+1} = x, n \in \mathbb{N}$. By (i), there exists a $\lim f(y_n)$, so $\lim f(x_n) = f(x)$. PROPOSITION 6: Let $X \in C$ be a separable Banach space; then $X \notin B$.

Proof: Let us observe that $\ell_1 \not\hookrightarrow X$. Indeed, otherwise by classical results (see [7]) ℓ_2 is a linear quotient of X. For any convex, bounded open neighbourhood \mathcal{U} of the origin in X, there exists a bounded linear operator $T: X \to \ell_2$ such that $B_{\ell_2} \subset T(\mathcal{U})$. The real function $f = \|\cdot\|_2^2 \circ T$ has uniformly continuous derivative on \mathcal{U} . The derivative Df satisfies

$$Df(x) = D||Tx||_2^2 \circ T = T^*(D||Tx||_2^2).$$

As $2B_{\ell_2^*} = \{D \|y\|_2^2, y \in B_{\ell_2}\}$ and T^* is noncompact (by Schauder's theorem), $\overline{Df(\mathcal{U})}$ is noncompact. Consequently, $X \notin \mathcal{C}$; a contradiction. Thus $\ell_1 \nleftrightarrow X$.

We proceed with the proof by contradiction. Assume $X \in \mathcal{B}$, so there exists a surjective operator $T: X \to \ell_2$ with locally uniformly continuous Fréchet derivative. By shifting and scaling, there exists a covering $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ of X consisting of open bounded and convex sets satisfying:

- (1) $T|_{\mathcal{U}_{\tau}}$ has uniformly continuous derivative;
- (2) for every real function f defined on \mathcal{U}_n with uniformly continuous derivative, $f'(\mathcal{U}_n) \subset X^*$ is relatively compact.

By the Baire category principle, for some $n \in \mathbb{N}$, $\overline{T(\mathcal{U}_n)}$ contains an open ball $B(x_0,\varepsilon), \varepsilon > 0$.

By Rosenthal's theorem, there exists a w-Cauchy sequence $\{x_k\}_{k\in\mathbb{N}}$ in \mathcal{U}_n such that $\{T(x_k)\}_{k\in\mathbb{N}}$ are $\varepsilon/4$ -separated, that is

$$||T(x_k) - T(x_l)|| > \varepsilon/4 \quad \text{for } k \neq l.$$

Choose a bump function ϕ on ℓ_2 with uniformly continuous derivative and $\phi(0) = 1$, $\phi(x) = 0$ for $||x||_2 > \varepsilon/10$. Let $f(x) = \sum_{k=1}^{\infty} \phi(x + x_{2k})$. Then, $f \circ T$ has uniformly continuous derivative on \mathcal{U}_n , but $f \circ T$ is not w-sequentially continuous, a contradiction with Lemma 5.

We have the following operator analogue of Lemma 5.

PROPOSITION 7: Let $X \in C$ be a Banach space, $T: X \to Y$ be an operator with locally uniformly continuous derivative. TFAE:

- (i) T is locally w-sequentially continuous;
- (ii) T is locally compact.

Proof: Find a covering $\{\mathcal{U}_{\lambda}\}_{\lambda \in \Lambda}$ of X consisting of bounded open and convex sets with the property that

- (1) $T\Big|_{\mathcal{U}_{\lambda}}$ has uniformly continuous derivative;
- (2) for every real function f defined on \mathcal{U}_{λ} with uniformly continuous derivative, $f'(\mathcal{U}_{\lambda})$ is relatively compact.

We will show that $T\Big|_{\mathcal{U}_{\lambda}}$ is weakly sequentially continuous if and only if $\overline{T(\mathcal{U}_{\lambda})}$ is compact.

(i) \Longrightarrow (ii). $X \in \mathcal{C} \Longrightarrow \ell_1 \not\leftrightarrow X$, so Rosenthal's theorem finishes the proof.

(ii) \implies (i). It is enough to use Lemma 5 together with the fact that for every $y^* \in Y^*, y^* \circ T \Big|_{U_1}$ is w-sequentially continuous.

It should be noted that T satisfying the above conditions also locally maps weakly convergent sequences in X into weakly convergent sequences in Y. More precisely, let \mathcal{U} be an open bounded and convex set in X, such that for every real function on \mathcal{U} with uniformly continuous derivative $\overline{f'(\mathcal{U})}$ is compact, and let $T: \mathcal{U} \to Y$ be an operator with uniformly continuous derivative. Then $\{x_n\} \cup \{x\} \subset \mathcal{U} \text{ and } x_n \xrightarrow{w} x \text{ implies } T(x_n) \xrightarrow{w} T(x)$. Indeed, by the last part of Lemma 5, $\phi \circ T(x_n) \to \phi \circ T(x)$ for every $\phi \in Y^*$.

PROPOSITION 8: Let $X \in C$ be a separable reflexive space, $T: X \to Y$ be an onto operator with locally uniformly continuous Fréchet derivative. Then Y is reflexive.

Proof: Let $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$ be a covering of X consisting of open bounded and convex sets such that for every real function f defined on \mathcal{U}_n , $n \in \mathbb{N}$, with uniformly continuous derivative, $f'(\mathcal{U}_n)$ is relatively compact. By the Baire category principle, for some \mathcal{U}_n , $\overline{T(\mathcal{U}_n)}$ has nonempty interior. As T maps weakly convergent sequences from \mathcal{U}_n into weakly convergent sequences in Y, $T(\mathcal{U}_n)$ is relatively weakly sequentially compact. By the Eberlein-Šmulyan theorem Y is reflexive.

PROPOSITION 9: Let T^* be the original Tsirelson space; then $T^* \in \mathcal{C}$.

Proof: Let f be a real function on B_{T^*} with uniformly continuous Fréchet derivative. The space T^* is reflexive and has an unconditional basis $\{e_k\}_{k\in\mathbb{N}}$. By standard argument and using Lemma 5 it is enough to show that $f(x_n)$ converges to f(0) for every w-null sequence in B_{T^*} . Assume the contrary, i.e. for some $\{x_n\}_{n\in\mathbb{N}}$, which may be chosen to be a block sequence satisfying $||x_n|| =$ $l, n \in \mathbb{N}$, and some $\varepsilon > 0$, $|f(x_n) - f(0)| > \varepsilon$. By properties of T^* [5], for every $N \in \mathbb{N}, x_N, x_{N+1}, \ldots, x_{2N}$ is 2*l*-equivalent to the canonical basis of c_0^N . This is a contradiction with Lemma 3. In particular, there is no C^2 operator from T^* onto c_0 .

Clearly, the same proof also works for T^*_{θ} , $0 < \theta < 1$ (see [5]), so we have a continuum of mutually totally incomparable reflexive spaces from C. Let us also remark that duals to separable reflexive spaces not belonging to \mathcal{B} cannot contain a copy of c_0 , ℓ_1 or a superreflexive space (or even a subspace with nontrivial type).

THEOREM 10: Let K be a scattered compact. Then $C(K) \in C$.

Proof: It is enough to show that every real function with uniformly continuous derivative on $B_{C(K)}$ is w-sequentially continuous.

Since every separable subspace of C(K), K scattered, is contained in a separable subspace of C(K) isomorphic to $C(K_1)$, where K_1 is countable (e.g. [6]), we may assume that K is countable.

Bessaga and Pelczynski in [4] provided an isomorphic classification of C(K) spaces, K countable, as those isomorphic to $C[0, \alpha]$, where α is a countable ordinal with the interval topology.

We will prove the claim by ordinal transfinite induction on α . However, in order to make the induction process work, we are forced to consider a slightly more general setting and introduce auxiliary parameters $F, G, \alpha_1, \ldots, \alpha_r$.

Simple facts on ordinal arithmetics which are used below can be found, e.g., in [10].

We set some notation. Let $\alpha \in \omega_1$. We call a pair $F, G \in C[0, \alpha]$ admissible if $\inf_{[0,\alpha]} F > 0$, $\sup_{[0,\alpha]} G < 0$.

Given $\alpha_1, \ldots, \alpha_r \leq \alpha$, we define a closed subspace of $C[0, \alpha]$:

$$C^{\alpha_1,\ldots,\alpha_r}_{[0,\alpha]}=\{\phi\in C[0,\alpha],\phi(\alpha_i)=0,1\leq i\leq r\}.$$

Given an admissible pair $F, G \in C[0, \alpha]$, we define

$$B^{F,G}_{\alpha,\alpha_1,\ldots,\alpha_r} = \{\phi \in C^{\alpha_1,\ldots,\alpha_r}_{[0,\alpha]}; G < \phi < F\}.$$

It is easy to verify that for every admissible pair F and G, $B^{F,G}_{\alpha,\alpha_1,\ldots,\alpha_r}$ is an open convex neighbourhood of the origin in $C^{\alpha_1,\ldots,\alpha_r}_{[0,\alpha]}$.

We will prove the following claim by induction on α :

For every admissible pair F, G, every $\alpha_1, \ldots, \alpha_r \leq \alpha$, and every real function f with uniformly continuous derivative on $\mathcal{U} = B^{F,G}_{\alpha,\alpha_1,\ldots,\alpha_r}$, f is w-sequentially Cauchy on \mathcal{U} .

Observe that setting $F \equiv 1$, $G \equiv -1$, $\{\alpha_i\} = \emptyset$ and using Lemma 5 ($\ell_1 \not\hookrightarrow C(K)$, for K scattered) we obtain the desired result.

CASE: $\alpha = \omega_0$. The proof of the special case when $\mathcal{U} = B_{c_0}$ from [9] requires only purely formal adjustments to generalize into case $\mathcal{U} = B_{\omega_0,\alpha_1,\ldots,\alpha_{r-1},\omega_0}^{F,G}$, F, G admissible, $\alpha_1, \ldots, \alpha_{r-1} \in \omega_0$.

In case none of $\alpha_1, \ldots, \alpha_r$ equals ω_0 , we proceed by contradiction as follows. Let $\{\phi_n\}_{n\in\mathbb{N}}$ be a w-Cauchy sequence in $\mathcal{U} = B^{F,G}_{\omega_0,\alpha_1,\ldots,\alpha_r}$, f as above, $f(\phi_n)$ not convergent. By a perturbation argument, we may assume that there exists $C \in \mathbb{R}$, $G(\omega_0) < C < F(\omega_0)$ such that for each n, $\phi_n(\alpha) = C$ for $\alpha \in \omega_0$ large enough (depending on n). There exists $K \in \omega_0$ such that

$$\inf_{[K,\omega_0]} F > C, \sup_{[K,\omega_0]} G < C.$$

Define admissible pair \tilde{F}, \tilde{G} on $C[0, \omega_0]$ as

$$\tilde{F}(\alpha) = \begin{cases} F(\alpha) & \text{for } \alpha \le K, \\ F(\alpha) - C & \text{for } \alpha > K; \end{cases}$$
$$\tilde{G}(\alpha) = \begin{cases} G(\alpha) & \text{for } \alpha \le K, \\ G(\alpha) - C & \text{for } \alpha > K. \end{cases}$$

Consider the affine mapping

$$T\colon C^{\alpha_1,\ldots,\alpha_r,\omega_0}_{[0,\omega_0]}\to C^{\alpha_1,\ldots,\alpha_r}_{[0,\omega_0]}$$

defined as $T(\phi) = \phi + C \cdot \chi_{[K,\omega_0]}$. The function $f \circ T$ has uniformly continuous derivative on $B^{\tilde{F},\tilde{G}}_{\omega_0,\alpha_1,\ldots,\alpha_r,\omega_0}$, but $f \circ T(\phi_n - C \cdot \chi_{[K,\omega_0]})$ is not convergent, a contradiction.

CASE: $\alpha = \omega_0 \cdot \alpha' + \alpha''$, where $\alpha', \alpha'' \in \omega_0$. It is enough to repeat the above proofs working simultaneously in all α' copies of ω_0 in the domain.

INDUCTIVE STEP: Assume our claim is true for all $\alpha \in [\omega_0, \beta), \beta \in [\omega_0, \omega_1)$. In addition, let us assume that for no $\gamma < \beta, \beta = \gamma + \omega_0$, and β is a limit ordinal. Let $\alpha_1, \ldots, \alpha_r < \beta, F, G$ be an admissible pair from $C[0, \beta]$ and f be a real function with uniformly continuous derivative on $\mathcal{U} = B^{F,G}_{\beta,\alpha_1,\ldots,\alpha_r,\beta}, f(0) = 0, f'(0) = 0$.

Choose an increasing sequence $\beta_k \nearrow \beta$ such that $[\beta_k + 1, \beta_{k+1}]$ are clopen, $\alpha_1, \ldots, \alpha_r < \beta_1$. Define for l < m, $P^{l,m}: C^{\alpha_1, \ldots, \alpha_r, \beta}_{[0,\beta]} \to C^{\alpha_1, \ldots, \alpha_r, \beta}_{[0,\beta]}$ as

$$P^{l,m}(\phi)(lpha) = \begin{cases} 0 & ext{if } lpha \in [eta_l+1,eta_m], \\ \phi(lpha) & ext{otherwise.} \end{cases}$$

Let us assume, by contradiction, that there is a w-Cauchy sequence $\{\phi_n\}_{n\in\mathbb{N}}\subseteq\mathcal{U}$, $f(\phi_{2n})<0, f(\phi_{2n+1})>1$ and each ϕ_n is supported by $[0,\beta_i]$ for some $i\in\mathbb{N}$.

Similarly to Claim 7 of [9], we obtain that there is $k \in \mathbb{N}$ and some infinite sets M_1 of odd integers and M_2 of even integers satisfying, whenever $k \leq l < m$,

$$egin{aligned} &fig(P^{l,m}(\phi_n)ig) < rac{1}{4} & ext{ for all but finitely many } n \in M_2, \ &fig(P^{l,m}(\phi_n)ig) > rac{3}{4} & ext{ for all but finitely many } n \in M_1. \end{aligned}$$

Indeed, otherwise (assuming, e.g., that given any k, no such M_1 exists) we define a decreasing sequence of infinite subsets $\{M_j\}_{j=1}^{\infty}$ of odd integers and increasing sequences of integers $\{l_i\}_{i=1}^{\infty}, \{m_i\}_{i=1}^{\infty}, l_i < m_i < l_{i+1}$, such that $M_{j+1} =$ $\{n \in M_j, f(P^{l_i,m_i}(\phi_n)) \geq \frac{1}{4}\}$ is infinite. Given any $N \in \mathbb{N}$, we can thus find $\phi_n \in M_N$ for which $|f(\phi_n) - f(P^{l_i,m_i}(\phi_n))| \geq \frac{1}{4}, i = 1, \ldots, N-1$, a contradiction with Lemma 3.

We may assume, without loss of generality, that k = 1, i.e. that the above holds for every $1 \leq l < m$. Using the above claim pass to another subsequence $\{\phi_{p_i}\}_{i\in\mathbb{N}}, p_i \in M_2$ for *i* even, $p_i \in M_1$ for *i* odd, such that

$$f(\psi_{2j}) < \frac{1}{4}, \quad f(\psi_{2j+1}) > \frac{3}{4}, \quad \text{where } \psi_i = P^{1,i}(\phi_{p_i}).$$

In addition, we may also assume $\operatorname{supp}(\psi_i) \subset [0,\beta_1] \cup [\beta_i + 1,\beta_{i+1}]$. By construction, $\{\psi_i\}_{i \in \mathbb{N}} \subseteq \mathcal{U}$ is w-Cauchy. Consider the linear operator $L: C^{\alpha_1,\ldots,\alpha_r,\beta_1+\omega_0}_{[0,\beta_1+\omega_0]} \to C^{\alpha_1,\ldots,\alpha_r,\beta}_{[0,\beta]}$, defined by

$$L(\phi)(\alpha) = \begin{cases} \phi(\alpha) & \text{if } \alpha \leq \beta_1, \\ \phi(\beta_1 + i) \cdot \psi_i(\alpha) & \text{if } \alpha \in [\beta_i + 1, \beta_{i+1}]. \end{cases}$$

There exists $\eta > 0$ such that for every $i \in \mathbb{N}$

$$G|_{[\beta_{i+1},\beta_{i+1}]} < -\eta \cdot \psi_i|_{[\beta_{i+1},\beta_{i+1}]} < F|_{[\beta_{i+1},\beta_{i+1}]}.$$

Define admissible $\tilde{F}, \tilde{G} \in C[0, \beta_1 + \omega_0]$ as

$$\begin{split} \tilde{F}(\alpha) &= \begin{cases} F(\alpha) & \text{for } \alpha \leq \beta_1, \\ 1 & \text{for } \alpha > \beta_1; \end{cases} \\ \tilde{G}(\alpha) &= \begin{cases} G(\alpha) & \text{for } \alpha \leq \beta_1, \\ -\eta & \text{for } \alpha > \beta_1. \end{cases} \end{split}$$

The real function $f \circ L$ has uniformly continuous Fréchet derivative on $B^{\bar{F},\tilde{G}}_{\beta_1+\omega_0,\alpha_1,\ldots,\alpha_r,\beta_1+\omega_0}$. However, $f \circ L((\psi_i \cdot \chi_{[0,\beta_1]} + \delta^i_j \cdot \chi_{\{\beta_1+j\}})$ is not convergent, a contradiction with the inductive hypothesis since $\alpha_1 + \omega_0 < \beta$.

The case $\mathcal{U} = B_{\beta,\alpha_1,\ldots,\alpha_r}^{F,G}$, where all α_i are distinct from β , follows from the previous case in the same fashion as in the case of c_0 above, that is to say, an adjustment of the admissible pair F, G allows us to add β among the $\alpha_1, \ldots, \alpha_r$.

P. HÁJEK

The only remaining case is when, for some $\gamma \ge \omega^2$, $\beta = \gamma + \delta$ where $\delta \le \omega_0$. In this case there exists a homeomorphism of the domain $H: \gamma + \delta \to \delta + \gamma = \gamma$ defined as

$$H(lpha) = egin{cases} \delta + lpha & ext{if } lpha \leq \gamma, \ lpha' & ext{if } lpha = \gamma + lpha'. \end{cases}$$

Thus, we obtain a reduction to the case of γ , $\gamma < \beta$, and the proof is completed.

The following surprising example, based on a construction of Schreier [12], was investigated in [11].

Example 11: There exists a subspace B of $C(\omega^{\omega})$ with unconditional shrinking basis $\{e_n\}$ and a biorthogonal basis $\{e_n^*\}$ such that $e_n^* \xrightarrow{w} 0$ and the spreading model built on $\{e_n^*\}$ is c_0 .

It follows immediately from Theorem 1 that $B \in \mathcal{B}$. Moreover, using [11], one can show by standard argument that the formal canonical injection from B into ℓ_2 is bounded. Yet, the space B as a subspace of a polyhedral space is itself (isomorphically) polyhedral and thus saturated by copies of c_0 . The space B also indicates that the structure of w-Cauchy sequences in general C(K), K scattered, is more complicated than that of c_0 . This is the main obstacle in trying to prove analogous statements to Proposition 13 below for C(K) instead of c_0 .

3. Operators from c_0

The main Proposition 13 of this section implies that a C^2 -smooth operator from c_0 into a space Y with an unconditional basis is locally compact unless $c_0 \hookrightarrow Y$. Together with Proposition 8 this statement implies that there is no surjective C^2 -smooth operator from c_0 onto T^* or vice versa.

LEMMA 12: Let $T: B_{c_0} \to Y$ be an operator with uniformly continuous Fréchet derivative on B_{c_0} . Assume that for every given $u \in B_{c_0}$ and $\{v_n\}_{n \in \mathbb{N}} \subset c_0$ equivalent to the canonical basis of c_0 , such that $u + v_n \in B_{c_0}$, we have

$$\lim_{n\to\infty}T(u+v_n)=T(u).$$

Then T is w-sequentially continuous on B_{c_0} .

Proof: Assume, by contradiction, that T is not w-sequentially continuous on B_{c_0} , i.e. there exists a w-Cauchy sequence $\{x_n\}_{n\in\mathbb{N}} \in B_{c_0}$ such that $T(x_n)$ is not convergent. If $\{T(x_n)\}_{n\in\mathbb{N}}$ is relatively compact, then there exists $y^* \in Y^*$ such that $\{y^* \circ T(x_n)\}_{n\in\mathbb{N}}$ is not convergent, a contradiction with Lemma 4.

We therefore assume that $\{T(x_n)\}_{n\in\mathbb{N}}$ is not relatively compact. By passing to a subsequence, changing notation and disregarding quantities that can be made arbitrary small, we can assume that there is a w-Cauchy sequence $\{x_n\}_{n\in\mathbb{N}}\in B_{c_0}$ satisfying:

(i) dist{span{ $T(x_1), \ldots, T(x_n)$ }, $T(x_{n+1})$ } > $\beta > 0$,

(ii) $\{x_n\}$ are supported in an increasing sequence of finite intervals $I_n = [1, m_n]$,

(iii) all the x_j , for j > n, are equal on I_n .

By assumption, for every x_n and every block sequence $\{y_k\}_{k\in\mathbb{N}}$ such that $x_n + y_k \in B_{c_0}$,

$$\lim_{k \to \infty} T(x_n + y_k) = T(x_n).$$

Thus for every $n \in \mathbb{N}$ there exists $l_n \in \mathbb{N}$, $l_n > m_n$ such that $||T(x_n+u)-T(x_n)|| < \beta/2$ for every $u \in c_0$, $x_n + u \in B_{c_0}$, $\operatorname{supp}(u) \subset [l_n, \infty)$. Consequently, for every $N \in \mathbb{N}$ we can choose a finite sequence $x_{n_1}, \ldots, x_{n_{2N}}$ satisfying $l_{n_i} < m_{n_{i+1}}, i = 1, \ldots, 2N - 1$. We obtain the following:

$$||T(x_{n_i} + \chi_{[l_{n_i}, m_{n_{2N}}]} \cdot x_{n_{2N}}) - T(x_{n_i})|| < \beta/2, \quad i = 1, \dots, 2N - 1.$$

Put $u_{n_i} = x_{n_{2N}} - (x_{n_{2i}} + \chi_{[l_{n_{2i}}, m_{n_{2N}}]} \cdot x_{n_{2N}}), i = 1, \dots, N-1$. Then u_{n_i} is a block sequence satisfying $||u_{n_i}|| = 2$, supported by $[m_{n_{2i-1}}, l_{n_{2i}}]$. Using (i), choose $y^* \in B_{Y^*}$ satisfying

$$y^*(T(x_{n_i})) = 0, \quad i = 1, \dots, 2N - 1,$$

 $y^*(T(x_{n_{2N}})) > \beta.$

Thus we have $|y^* \circ T(x_{n_{2N}} - u_{n_i})| < \beta/2, i = 1, ..., N - 1, |y^* \circ T(x_{n_{2N}})| > \beta$. Because N is arbitrary large, it is a contradiction with Lemma 3.

PROPOSITION 13: Let Y be a separable Banach space with an unconditional basis. Suppose $T: c_0 \to Y$ has a locally uniformly continuous Fréchet derivative. Then either $c_0 \hookrightarrow Y$ or T is locally compact.

Proof: We proceed by contradiction, assuming that $c_0 \nleftrightarrow Y$ and T is not locally compact. By standard arguments together with Lemma 12 and Proposition 7, we may assume that T has uniformly continuous derivative on $\{a \in B_{c_0}, a = \sum a_i e_i, -\delta \leq a_i \leq 1 \text{ for } i \in \mathbb{N}\}$ for some $\delta > 0, T(0) = 0$ and $\|T(e_k)\| \geq 2\varepsilon > 0$. Denote by $\{x_k\}_{k \in \mathbb{N}}$ the unconditional normalized basis of Y, $\{x_k^*\}_{k \in \mathbb{N}}$ its dual basis. By the proof of Theorem 10 (a variation of Lemma 4), $\{T(e_k)\}_{k \in \mathbb{N}}$ is w-null, so on passing to a subsequence we may assume that there exist a sequence $J_k = [i_k, j_k]$ of consecutive intervals of integers and $f_k \in B_{Y^*}$, P. HÁJEK

 $f_k \in \text{span}\{x_{i_k}^*, \dots, x_{j_k}^*\}$, such that $f_k \circ T(e_k) > 3\varepsilon/2 > 0$. Put $P^k: Y \to Y$ to be a projection defined as $P^k(\sum_{i=1}^{\infty} \alpha_i x_i) = \sum_{i=i_k}^{j_k} \alpha_i x_i$. Our aim now is to pass to a subsequence $\{k_i\}_{i \in \mathbb{N}}$ of \mathbb{N} such that:

$$f_{k_l} \circ T\Big(\sum_{i=1}^n e_{k_i}\Big) \ge \varepsilon$$
 for every $1 \le l \le n$.

Before we present the construction, let us observe how this implies the statement of Proposition 13. By compactness of bounded sets in finite-dimensional space $P^{k_l}Y$, we may find an increasing sequence of integers $\{n_p\}_{p\in\mathbb{N}}$ such that for every $l\in\mathbb{N}$

$$\lim_{p \to \infty} P^{k_l} \left(T \left(\sum_{i=1}^{n_p} e_{k_i} \right) \right) = u_l$$

exists, and of course $||u_l|| \geq \varepsilon$.

By the unconditionality of $\{x_k\}_{k\in\mathbb{N}}$ and boundedness of T, $\{u_l\}_{l\in\mathbb{N}}$ forms a block basis in Y satisfying

$$C_1 \max\{|lpha_l|\} \le \left\|\sum_{l=1}^n lpha_l u_l\right\| \le C_2 \max\{|lpha_l|\} \quad ext{where } C_1, C_2 \ge \varepsilon.$$

In other words, $\{u_l\}_{l\in\mathbb{N}}$ is equivalent to the canonical basis of c_0 . The left inequality follows from the fact that $\{u_l\}$ is a seminormalized block basic sequence. From the unconditionality, we obtain that $\|\sum \alpha_l u_l\| \leq C \max |\alpha_l| \|\sum u_l\|$, and the latter is bounded by the above and by the unconditionality of the basis (which implies that $\sum P^{k_l}$ is bounded). The sequence $\{k_i\}_{i\in\mathbb{N}}$ is constructed by induction as follows. Given $r \in \mathbb{N}$, put n_r to be a large enough integer (Lemma 3) so that whenever $f \in B_{Y^*}$, $v \in B_{c_0}$, $\{w_i\}_{i=1}^{n_r} \in c_0$ are such that $v + w_i \in B_{c_0}$, and w_i are 1-equivalent to the canonical basis of $c_0^{n_r}$, we have

$$|f \circ T(v+w_i) - f \circ T(v)| < \left(\frac{\varepsilon}{2}\right)^{r+1}$$

for some $i \in [1, n_r]$.

Using Lemma 3 again, there exists $Q_1 \in \mathbb{N}$, $Q_1 > n_1$ such that $f_i \circ T(e_i + u) \geq (1 + \frac{1}{4})\varepsilon$ whenever $i \in [1, n_1]$, $u \in B_{c_0}$, $\operatorname{supp}(u) \subset [Q_1, \infty)$. On the other hand, for every $j > Q_1$ there exists some $i \in [1, n_1]$ such that $f_j \circ T(e_i + e_j) \geq (1 + \frac{1}{4})\varepsilon$. Thus there exists $k_1 \in [1, n_1]$ and an infinite increasing sequence $\{m_1^1, m_2^1, \ldots\} = M_1 \subset \mathbb{N}$ such that for every $u \in B_{c_0}$, $\operatorname{supp}(u) \subset M_1$ and every $k \in M_1$ we have $k > k_1$ and

$$f_{k_1} \circ T(e_{k_1} + u) \ge (1 + \frac{1}{4})\varepsilon, \quad f_k \circ T(e_{k_1} + e_k) \ge (1 + \frac{1}{4})\varepsilon.$$

Similarly, there exists $Q_2 > m_{n_2}^1$ such that $f_i \circ T(e_{k_1} + e_i + u) \ge (1 + \frac{1}{8})\varepsilon$ whenever $i \in \{m_1^1, \ldots, m_{n_2}^1\}$, $u \in B_{c_0}$, $\operatorname{supp}(u) \subset [Q_2, \infty)$. Also, whenever $j > Q_2$, there exists $i \in \{m_1^1, \ldots, m_{n_2}^1\}$ such that $f_j \circ T(e_{k_1} + e_i + e_j) \ge (1 + \frac{1}{8})\varepsilon$. Thus, there exist $k_2 \in \{m_1^1, \ldots, m_{n_2}^1\}$ and an infinite increasing sequence $\{m_1^2, m_2^2, \ldots\} = M_2 \subset M_1$ such that for every $u \in B_{c_0}$, $\operatorname{supp}(u) \subset M_2$ and every $k \in M_2$ we have $k > k_2$ and

$$f_{k_2} \circ T(e_{k_1} + e_{k_2} + u) \ge (1 + \frac{1}{8})\varepsilon, \quad f_k \circ T(e_{k_1} + e_{k_2} + e_k) \ge (1 + \frac{1}{8})\varepsilon.$$

The inductive process continues in an obvious manner, at the r-th step choosing $k_r \in \{m_1^{r-1}, \ldots, m_{n_r}^{r-1}\} \subset M_{r-1}$ and a subset $M_r \subset M_{r-1}$ satisfying

$$f_{k_r} \circ T\left(\sum_{i=1}^r e_{k_i} + u\right) \ge \left(1 + \frac{1}{2^{r+1}}\right)\varepsilon, \ f_k \circ T\left(\sum_{i=1}^r e_{k_i} + e_k\right) \ge \left(1 + \frac{1}{2^{r+1}}\right)\varepsilon,$$

whenever $u \in B_{c_0}$, $supp(u) \subset M_r$ and $k \in M_r$. This finishes the proof.

As an immediate consequence, there exists no C^2 operator from c_0 onto T^* .

4. Analytic functions on c_0

In the last part of our paper, we will obtain a finer description of the behavior of real analytic functions on c_0 , in the spirit of Lemma 4. A similar statement was obtained in the complex setting by Aron and Globevnik in [1]. In fact, using the standard complexification argument, their result implies our Proposition 16.

Our proof uses ideas from [2], but adds a new ingredient of estimating the second derivative, which yields certain estimates independent of the degree of the polynomial and is of independent interest.

We refer to [2] for most of our notation.

Given a real C^2 -smooth function f on some domain \mathcal{U} in c_0^n , we denote by $D^2f: \mathcal{U} \to \mathcal{L}(c_0^n, \ell_1^n)$ the usual second derivative of f, which can be represented at every point of \mathcal{U} by a symmetric matrix $(\partial^2 f/\partial x_i \partial x_j)_{i,j=1,...,n}$. For $T \in \mathcal{L}(c_0^n, \ell_1^n)$, ||T|| stands for the usual operator norm. Let us denote $\overline{\Delta}f = \sum_{i=1}^n |\partial^2 f/\partial x_i^2|$. The following lemma is well known; we include the proof for convenience.

LEMMA 14: Let $T = (a_{ij})_{i,j=1,...,n} \in \mathcal{L}(c_0^n, \ell_1^n), ||T|| = 1$; then $\sum_{i=1}^n |a_{ii}| \le 1$. In particular, let $f \in C^2$, $f: B_{c_0^n} \to \mathbb{R}, ||D^2f|| \le 1$ on $B_{c_0^n}$. Then $\overline{\Delta}f \le 1$ on $B_{c_0^n}$.

Proof: Clearly,

$$||T|| = \max\left\{||T(x)||_1, x = \sum_{i=1}^n \pm e_i\right\}.$$

For any choices of signs $\varepsilon_j = \pm 1, \delta_i = \pm 1, 1 \le i, j \le n$, we have

$$||T|| \ge \sum_{i=1}^{n} \left| \sum_{j=1}^{n} \varepsilon_{j} a_{ij} \right| \ge \sum_{i=1}^{n} \left(\delta_{i} a_{ii} + \delta_{i} \sum_{j \neq i} \varepsilon_{j} a_{ij} \right).$$

Keeping δ_i fixed and averaging over all possible combinations of signs of ε_j we obtain $||T|| \ge \sum_{i=1}^n \delta_i a_{ii}$, so $||T|| \ge \sum_{i=1}^n |a_{ii}|$.

LEMMA 15: Let p be a homogeneous polynomial of degree k on $B_{c_0^n}$. If $\overline{\Delta}p \leq 1$ on $B_{c_0^n}$, then $\sum_{i=1}^n |p(e_i)| \leq 16$.

Proof: We may assume that n is odd and p is a symmetric polynomial, and we need to prove our estimate with 8 rather than 16. Indeed, otherwise assuming $p(e_i) \geq 0$ (here is why we need a better estimate; in general we have to pass to a suitable subset of $\{e_i\}_{i=1}^n$, where the signs of p remain constant) we can consider \tilde{p} defined on $B_{c_0}^m$, $m \geq n$, m odd, as

$$\tilde{p}\left(\sum_{i=1}^{m} a_i e_i\right) = \frac{1}{m!} \sum_{\pi \in \Pi_m} p\left(\sum_{i=1}^{n} a_{\pi(i)} e_i\right),$$

where Π_m is the group of permutations of $\{1, \ldots, m\}$. Clearly, \tilde{p} is symmetric, $\overline{\Delta}\tilde{p} \leq 1$ and $\sum_{i=1}^{m} |\tilde{p}(e_i)| = \sum_{i=1}^{n} |p(e_i)|$.

Assume $p(x_1, \ldots, x_n) = \sum_{|\alpha|=k} a_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_n}$; denote $\tilde{a_i}$ the coefficient by x_i^k . Clearly, $\sum_{i=1}^n |p(e_i)| = \sum_{i=1}^n |\tilde{a_i}|$. To estimate $\sum_{i=1}^n |\tilde{a_i}|$, consider the polynomial

$$q(x_1,\ldots,x_n) = \sum_{i=1}^n (-1)^i \frac{\partial^2 p}{\partial x_i^2}$$

Then q is a homogeneous polynomial of degree k-2, $|q| \leq 1$ on $B_{c_0^n}$ and, due to the symmetry of p and n being odd, the leading coefficients of q by x_i^{k-2} are $(-1)^i k(k-1)\tilde{a_i}$. By Theorem 1.2 of [2], $k(k-1)\sum_{i=1}^n |\tilde{a_i}| \leq 4k^2$. Thus $\sum_{i=1}^n |\tilde{a_i}| \leq 8$, and the proof is completed.

Unfortunately, uniform estimates of this type, independent of the dimension n and degree of the polynomial, are not valid for nonhomogeneous polynomials (consider, e.g., $\prod_{i=1}^{n} (1 - x_i^4)$ on c_0^n). This is the reason why no analogue of the following proposition is valid under the weaker assumption of C^2 smoothness rather than analyticity.

PROPOSITION 16: Let f be a real analytic function on some domain \mathcal{U} in c_0 , $0 \in \mathcal{U}$, f(0) = 0 and f'(0) = 0. Then there exists some $\varepsilon > 0$ such that $\sum_{i=1}^{\infty} |f(\varepsilon e_i)| < \infty$.

Proof: Let us assume that the Taylor series of $D^2 f$ at 0, namely

$$D^{2}f(x) = P_{0} + P_{1}(x) + P_{2}(x) + \cdots,$$

where $P_k(x)$ is a k-homogeneous polynomial form c_0 into $\mathcal{L}(c_0, \ell_1)$, is uniformly convergent on εB_{c_0} and moreover satisfies

$$\sup_{x\in\varepsilon B_{c_0}}\|P_k(x)\|\leq K(1-\varepsilon)^k,$$

where K is some constant. By Lemmas 14 and 15 and an easy homogeneity argument, we obtain

$$\sum_{i=1}^{\infty} |f(\varepsilon e_i)| \le 16K\varepsilon^2 \sum_{k=0}^{\infty} (1-\varepsilon)^k = 16K\varepsilon.$$

Reference

- [1] R. Aron and J. Globevnik, Analytic functions on c_0 , Revista Matemática de la Universidad Complutense de Madrid 2 (1989), 27–33.
- [2] R. Aron, B. Beauzamy and P. Enflo, Polynomials in many variables: real vs complex norms, Journal of Approximation Theory 74 (1993), 181-198.
- [3] S. M. Bates, On smooth, nonlinear surjections of Banach space, Israel Journal of Mathematics 100 (1997), 209-220.
- [4] C. Bessaga and A. Pelczynski, Spaces of continuous functions (IV), Studia Mathematica 19 (1960), 53-62.
- [5] P. Casazza and T. Shura, Tsirelson's space, Lecture Notes in Mathematics 1363, Springer-Verlag, Berlin-Heidelberg-New York, 1989.
- [6] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Monograph Surveys on Pure and Applied Mathematics 64, Pitman, London, 1993.
- J. Hagler, Some more Banach spaces which contain l₁, Studia Mathematica 46 (1973), 35-42.
- [8] J. Hagler, A counterexample to several questions about Banach spaces, Studia Mathematica 60 (1977), 289-308.
- [9] P. Hájek, Smooth functions on c₀, Israel Journal of Mathematics 104 (1998), 17-27.

- [10] T. Jech, Set Theory, Academic Press, New York-San Francisco-London, 1978.
- [11] A. Pelczynski and W. Szlenk, An example of a non-shrinking basis, Revue Roumaine de Mathématiques Pures et Appliquées 10 (1965), 961–965.
- [12] J. Schreier, Ein Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Mathematica 2 (1930), 58-62.